Supplementary file 1

Nanobody-functionalized liposomal doxorubicin: A novel strategy for angiogenesis suppression via VEGFR2 targeting

Aezam Akbari¹, Azadeh Ghaffari¹, Fahimeh Haji-Ahmadi², Vahideh Farzam Rad³, Mahdi Behdani⁴, Hamidreza Kheiri-Manjili^{1,5}, Cobra Moradian⁶, Davoud Ahmadvand^{6*}

¹Faculty of Pharmacy, Zanjan University of Medical Sciences, Zanjan, Iran

 ²University of California San Francisco, Cellular Molecular Pharmacology School, School of Medicine, San Francisco CA, USA
³Department of Physics, Institute for Advanced Studies in Basic Sciences, university of Zanjan, Zanjan, Iran
⁴Venom and Biotherapeutics Molecules Laboratory, Biotechnology Department, Biotechnology Research Center, Pasteur Institute of Iran, Tehran, Iran

⁵Cancer Gene Therapy Research Center, Zanjan University of Medical Science, Zanjan, Iran

⁶Department of Molecular Imaging, Faculty of Advanced Technology in Medicine, Iran University of Medical Sciences, Tehran, Iran

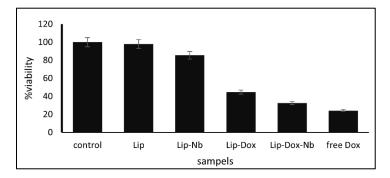


Figure S1: Cytotoxicity assay of free Dox and different liposomal formulations on HUVEC cells after 24 h treatment using MTT at 37 °C. Cell viability is represented as mean \pm SD (n = 3).