Enhanced efficacy of breast cancer treatment with etoposidegraphene oxide nanogels: A novel nanomedicine approach

Abbas Asoudeh-Fard^{1,2#}, Milad Mohkam^{3#}, Asghar Parsaei⁴, Shadi Asghari⁵, Antonio Lauto^{6,7}, Fatemeh Khoshnoudi⁸, Mustafa Mhmood Salman Al-Mamoori⁹, Mohadeseh Asoudeh-Fard¹⁰, Hossine Ghasemi Sadabadi^{11,12}, Ahmad Gholami^{13,14*}

¹ Institute Galilée-University Sorbonne, University Sorbonne Paris North, Paris, France

² Research Center for Pharmaceutical Nanotechnology, Tabriz University of Medical Sciences, Tabriz, Iran

³ Allergy Research Center, Shiraz University of Medical Sciences, Shiraz, Iran

⁴Niko Gene Saba Company, Rayan Novin Pajoohan Pars, Biotechnology Company, Biotechnology Incubator, Shiraz University of Medicine Sciences, Shiraz, Iran

⁵ Department of Microbiology, Shiraz Branch Islamic Azad University, Shiraz, Iran

⁶ School of Science, University of Western Sydney, Campbelltown, NSW, 2560, Australia

⁷School of Medicine, University of Western Sydney, Campbelltown, NSW, 2560, Australia

⁸ Department of Cellular and Molecular, Zarghan Branch Islamic Azad University, Zarghan, Iran

⁹ Department of Cellular and Molecular, Mashhad Branch Islamic Azad University, Mashhad, Iran

¹⁰ Department of General Medicine, Azad Zahedan Medicine University, Zahedan, Iran

¹¹ Hematology and Oncology Research Center, Tabriz University of Medical Sciences Tabriz, Iran

¹² Faculty of Medicine Tabriz, University of Medical Sciences Tabriz, Iran

¹³ Biotechnology Research Center, Shiraz University of Medical Sciences, Shiraz, Iran

¹⁴ Department of Pharmaceutical Biotechnology, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran

"These authors have contributed equally to this work.

Fig. S1. MTT Assay for Cytotoxicity of Etoposide-Graphene Oxide (GO) Complex Nanogels. A: shows the dose-dependent cytotoxicity of ETO on HUVEC cells with viabilities at 32.50%, 35.53%, and 46.46% for 10 μ g/mL, 5 μ g/mL, and 1 μ g/mL, respectively; **B**: illustrates similar effects for the ETO/GO complex with viabilities at 33.70% (10 μ g/mL) and 37.29% (5 μ g/mL); **C**: indicates minimal cytotoxicity of GO alone on HUVEC cells, maintaining viability above 90% at all concentrations. For MCF-7 cells, **D**: shows ETO's cytotoxicity with viabilities at 38.63%, 41.02%, and 51.09% at the same concentrations; **E**: reflects the impact of the ETO/GO

complex with viabilities at 32.24% (10 μ g/mL) and 38.46% (5 μ g/mL); **F**: demonstrates negligible effects of GO alone with cell viability exceeding 90% at all concentrations. The IC50 for ETO was approximately 2.5 μ g/mL in HUVEC and 1.0 μ g/mL in MCF-7 cells, suggesting higher cytotoxicity in cancerous cells, with statistical significance confirmed across treatments (p < 0.0001).

Fig. S2: Q-PCR analysis of gene expression in MCF-7 cells treated with etoposide-graphene oxide (GO) nanogels.