Supplementary file 1

Allosteric ligand-driven smart nanoconjugates for mutationselective EGFR targeting: A precision approach to overcoming tyrosine kinase inhibitor resistance

Dilpreet Singh^{1*}, Akshay Kumar¹, Vir Vikram Sharma¹

School of Pharmaceutical Sciences, CT University, Ferozepur Rd, Sidhwan Khurd, Punjab 142024, India

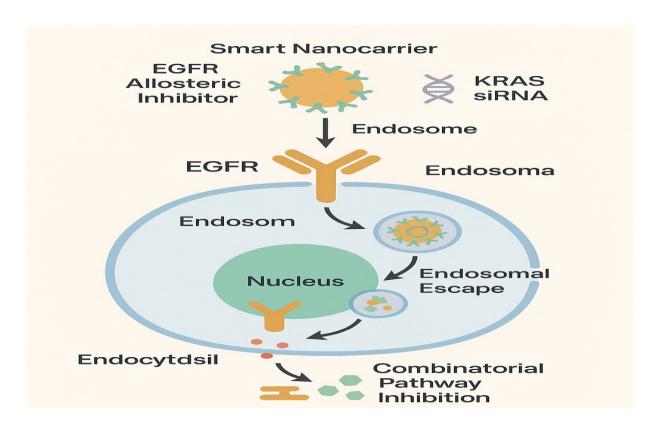


Figure S1: Dual-functional nanoconjugate delivering both an allosteric EGFR inhibitor and siRNA targeting KRAS. Workflow includes targeted

uptake, combinatorial pathway inhibition, and tumor regression. (Adapted from literature under Creative Commons license and redrawn by authors.)

Table S1: Strategies for Allosteric Ligand Conjugation to Nanocarriers

Conjugation Method	Chemistry Type	Compatible Ligands	Nanocarrier Compatibility	Reaction Conditions	Stability of Linkage	Common Applications
EDC/NHS Coupling	Amide bond formation	Carboxyl, amine- bearing	Liposomes, PLGA NPs, micelles	Mild aqueous (pH 5.5–7.5)	High (covalent)	Peptides, small- molecule ligands
Click Chemistry (CuAAC)	Azide–alkyne cycloaddition	Azide/alkyne- functional groups	Dendrimers, polymeric micelles, lipids	Requires Cu(I) catalyst, pH 7–8	Very High (bioorthogonal)	Small molecules, aptamers, fluorescent probes
Thiol–Maleimide Coupling	Michael addition	Thiol-containing ligands	PEGylated liposomes, nanogels	Mild, aqueous or organic media	High (stable thioether)	Allosteric inhibitors, antibodies
Schiff Base Formation	Aldehyde– amine	Amine or aldehyde-containing	Chitosan, dextran- based carriers	Aqueous, reversible at low pH	Moderate (reversible)	pH-sensitive release systems
PEGylation with Functional Ends	Pre-activated PEG derivatives	Any ligand with reactive group	Liposomes, polymers, dendritic systems	Room temp, aqueous/organic	High	Stealth delivery + targeting ligand attachment
Silane Coupling	Siloxane linkage	Hydroxyl, amine	Mesoporous silica NPs	Organic solvents or aqueous pH 4–5	High	Covalent immobilization of bioactives