Pourseif MM., et al., *BioImpacts*, 2019, 9(3), 131-144 doi: <u>10.15171/bi.2019.18</u> http://bi.tbzmed.ac.ir/

A multi-method and structure-based in silico vaccine designing against *Echinococcus* granulosus through investigating enolase protein

Mohammad Mostafa Pourseif^{1,2}, Mitra Yousefpour^{1*}, Mohammad Aminianfar², Gholamali Moghaddam³, Ahmad Nematollahi⁴

¹Department of Physiology, Faculty of Medicine, AJA University of Medical Sciences, Tehran, Iran

² Infectious Diseases and Tropical Medicine Research Center (IDTMRC), Department of Aerospace and Subaquatic Medicine, AJA University of Medical Sciences, Tehran, Iran

³ Department of Animal Sciences, Faculty of Agriculture, University of Tabriz, Tabriz, Iran

⁴ Department of Pathobiology, Veterinary College, University of Tabriz, Tabriz, Iran

Fig. S1. The plots show the sequence-based prediction of potential transmembrane topology and signal peptide in the EgEnolase protein sequence. (A) The prediction plot shows subcellular localization of EgEnolase protein by using the TMHMM server. (B) Transmembrane topology profile of EgEnolase protein obtained from TMPred server. (C) The potential transmembrane helix of EgEnolase protein predicted in the TOPCONS server and based on six different algorithms. (D) The consensus prediction plot of TOPCONS server.

Fig. S2. Prediction of the post-translational modifications in the EgEnolase protein sequence. (A) The plot indicates the residue (17-NPT-20) with the potential N-glycosylation site. (B) Serine, Threonine, and Tyrosine phosphorylation plot obtained from the NetPhos v2.0 web-server. The scores more than the threshold value (0.5) were predicted as a phosphorylation site.

Fig. S3. Solvent accessible and hydrophobic regions of the EgEnolase protein sequence. (**A**) The plot illustrates surface-accessible regions of the EgEnolase protein sequence. (**B**) The hydrophobic residues are shown as plot and based on the Kyte and Doolittle algorithm. The negative values are related to the hydrophilic amino acids.

Fig. S4. ProSA-based energy plots for the 3D models. The energy plot for EgEnolase (A), DRB1*01101 (B), C. lupus Toll-like receptor

2 (C), and *C. lupus* Toll-like receptor 4 (D) are represented. The negative values of the plots are related to the stable residues.

beta-enolase isoform X1 [Canis lupus familiaris]

Sequence ID: XP 536606.4 Length: 440 Number of Matches: 5

▶ See 1 more title(s)

Range	1: 26 t	to 143 GenPept Graphics	Vext Mat	🔻 Next Match 🔺 Previous Match		
Score		Expect Method Identities	Positives	Gaps		
77.4 Ł	oits(18	39) 2e-14 Compositional matrix adjust. 43/118(35)	%) 66/118(55%)	15/118(12%)		
Query	421	VKIGMDVAFFRKGPSLPSGASTGVHEAVELRDADKNAYMGKGG	GGSGGGGSIK 4	73		
Sbjct	26	V++ + A K ++PSGAST ++EA+ELKD DK+ Y+GKG VEVDLHTAKGRFRAAVPSGASTLIYEALELRDGDKSRYLGKGVLKAV	EHINKTLGPALLE 8	5		
Query	474	EKFVVTDQQRIDEFMIKLDGSPNKGKLGGGGGGGGGGSM	IGTEVYHHLKSV 523			
Sbjct	86	KLLSVVDQEKVDKFMIELDGTENKSKFGANAILGVSLAVCKAGAAEK	GVPLYRHIADL 143			

Fig. S5. The alignment output between the vaccine protein sequence and the most similar protein based on the NCBI's blastp (protein-protein BLAST) algorithm. The similar proteins were searched among *Canis lupus familiaris* proteome information.

(A)

IFIIVVLINATTQYDCVTSSEVVSDSYNKTTIFFENKPQYYNSPSGNVVPKAIMPILIKKGQTIQVSSITTNVKYEATNQD LTFLFRKDGCHGTNSEIATYAGATNTNVFLGNTNTVSLTQFKFTADYNGIILIVGKNLGASLPGDIRVNVFEAAAKEAA AKAPPHALSEAAAKKLAMQEFMILPTGFFRKOPGPGGALIIHARQIFDSFFRKOPGGAMQEFMILPTGAKFFRKOP GPG FEMILPTGAKSFFFRKOPGPGLIIHARQIFDSFFRKOPGGMSRAAGWGOWVSHFFRKOPGPGAGWGUW VSHRSGEFFRKOPGPGLRIEEELGPKAVYFFRKOPGPCKAVYAGEHFRNPLFFRKOPGPGYPINSIEDPFDQDFFRKO PGFGVLPVPSFVLNGGFFRKOPGGGYGKVKIGMDVAFFRKOPSLOSGASTGVHEAVELRDADKNAYMGKGG GGSGGGGSIKEKFVVTDQQRIDEFMIKLDGSPNKGKLGGGGGSGGGGGSKTAIDKAGYTGKVKKGGGGGSSKTADDKAGYTGKVKKGGGGGGGSSKTAIDKAGYTGKVKKGGGGGGGGSSKEYQDGNYNLDFKNPKAAASSIVSGSKLSDI

Adjuvants: IFIIV...NVF and APPHALS Linkers: EAAAK, FFRK, GPCPC, GPSL, and GGGGSGGGG Helper T-cell Epitope: 13-mer epitopes (B) ATTTTTATTATTGTGGTGCTGATTAACGCGACCACCCAGTATGATTGCGTGACCAGCAGCGAAGTGGT GCAACGTGGTGCCGAAAGCGATTATGCCGATTCTGATTAAAAAAGGCCAGACCATTCAGGTGAGCAGC ATTACCACCAACGTGAAATATGAAGCGACCAACCAGGATCTGACCTTTCTGTTTCGCAAAGATGGCTG CCATGGCACCAACAGCGAAATTGCGACCTATGCGGGCGCGACCAACACCAACGTGTTTCTGGGCAACA CCAACACCGTGAGCCTGACCCAGTTTAAATTTACCGCGGATTATAACGGCATTATTCTGATTGTGGGC AAAAACCTGGGCGCGAGCCTGCCGGGCGATATTCGCGTGAACGTGTTTGAAGCGGCGGCGAAAGAAGC GGCGGCGAAAGCGCCGCCGCATGCGCTGAGCGAAGCGGCGGCGAAAAAACTGGCGATGCAGGAATTTA A GATTTTTGATAGCTTTTTTCGCAAAGGCCCGGGCCCGGGCGCGGGCGCGGAGGAATTTATGATTCTGCCGACCGGCGCGAAATTTTTTCGCAAAGGCCCGGGCCCGGGCGAATTTATGATTCTGCCGACCGGCGCGAA AAGCTTTAGCTTTTTCGCAAAGGCCCGGGCCCGGGCCTGATTATTCATGCGCGCCAGATTTTTGATA ATTTTTTTCGCAAAGGCCCGGGCCCGGGCGCGGGCCTGGGGCGTGATGGTGAGCCATCGCAGCGGCGAA TTTTTTCGCAAAGGCCCGGGCCCGGGCCTGCGCATTGAAGAAGAACTGGGCCCGAAAGCGGTGTATTT TTTTCGCAAAGGCCCGGGCCCGGGCAAAGCGGTGTATGCGGGCGAACATTTTCGCAACCCGCTGTTTTT TCGCAAAGGCCCGGGCCCGGGCTATCCGATTGTGAGCATTGAAGATCCGTTTGATCAGGATTTTTTTC GCAAAGGCCCGGGCCCGGGCGTGCTGCCGGTGCCGAGCTTTAACGTGCTGAACGGCGGCTTTTTTCGCA AAGGCCCGGGCCGGGCGGCTATACCGGCAAAGTGAAAATTGGCATGGATGTGGCGTTTTTTCGCAAA TGACCGATCAGCAGCGCATTGATGAATTTATGATTAAACTGGATGGCAGCCCGAACAAAGGCAAACTG GGCGGCGGCGGCGGCGGCGGCGGCGGCGGCGGCAGCATGGGCACCGAAGTGTATCATCATCTGAAAAGCGT AGCAGCGAATTTTATCAGGATGGCAACTATAACCTGGATTTTAAAAACCCGAAAGCGGCGGCGAGCAG CATTGTGAGCGGCAGCAAACTGAGCGATATTTAA

Fig. S6. The primary sequence of the designed multi-epitope vaccine. Amino acid sequence (A), and nucleotide sequence (B) of the

vaccine construct.

 Table S1. Antigenic scores for eight EgEnolase protein sequences in terms of two different predictor tools.

NCBI accession number	Predictio	variation method VaxiJen v2.0 0.4814 0.3705 0.2935 0.2935 0.3705
	ANTIGENpro	VaxiJen v2.0
ACY30465	0.5309	0.4814
XP_024346720	0.4791	0.3705
EUB55526	0.3309	0.2935
XP_024346722	0.3309	0.2935
EUB55524	0.4791	0.3705
CDS19796	0.5903	0.4814
CDS21390	0.4791	0.3705

Query proteins	PDB Templates	Identity (%)	Total score
TLR-2	2Z7X	75	768
	5D3I	64	744
	3A79	59	657
	2Z81	61	645
	2Z80	70	403
	1077	90	284
TLR-4	4G8A	68	795
	3FXI	68	791
	3VQ1	59	696
	2Z64	59	692
	2Z63	67	672
	5IJB	55	605
	2PSN	75	682

Table S2. The six high rank homologous PDB structures that were used as template for homology modeling.

EgEnolase	3B97	75	679
	2XSX	73	670
	4ZA0	72	658
	1TE6	71	655
	3UCC	71	655
DRB1*01101	4AH2	82	74
	3PDO	82	74
	1AQD	82	74
	4X5X	81	74
	2WBJ	79	74
	1YMM	80	74

13-mer peptides	weighted score [¶]		13-mer peptides	weighted score		13-mer peptides	weighted score	
	center	lowest E		center	lowest E		center	lowest E
GALIIHARQIFDS	-825.7	-999.1	GVSLAVCKAGAAE	-602.3	-633.7	SSIVSGSKLSDIY	-626.0	-685.1
LIIHARQIFDSR	-793.3	-945.2	CKAGAAEKGVPLY	-587.5	-670.3	SKLSDIYSEMISK	-603.1	-678.8
HARQIFDSRGNPT	-616.4	-809.5	AEKGVPLYRHVAD	-623.5	-711.1	YSEMISKYPIVSI	-675.1	-819.4
ARQIFDSRGNPTV	-580.5	-721.6	PLYRHVADLAGNK	-605.8	-746.5	YPIVSIEDPFDQD	-876.3	-896.0
FDSRGNPTVEVDL	-786.6	-786.6	VADLAGNKDVVLP	-571.3	-675.7	DPFDQDDWAAWTE	-762.9	-821.4
DSRGNPTVEVDLT	-691.1	-711.3	GNKDVVLPVPSFN	-708.8	-830.6	DWAAWTEFNAKAG	-718.3	-805.3
NPTVEVDLTTSKG	-676.0	-712.7	VLPVPSFNVLNGG	-844.0	-896.6	FNAKAGIQIVGDD	-623.8	-769.6
VEVDLTTSKGLFR	-748.5	-763.1	FNVLNGGSHAGNK	-635.1	-727.1	IQIVGDDLTVTNP	-652.9	-812.7
DLTTSKGLFRAAV	-634.1	-710.4	GSHAGNKLAMQEF	-613.0	-702.8	LTVTNPERVQQAI	-611.1	-678.6
TSKGLFRAAVPSG	-675.9	-812.7	KLAMQEFMILPTG	-906.4	-1016.2	RVQQAIDRKACNA	-604.3	-667.7
LFRAAVPSGASTG	-750.5	-848.3	AMQEFMILPTGAK	-882.7	-983.0	DRKACNALLLKVN	-684.5	-815.0
AVPSGASTGVHEA	-574.4	-713.7	EFMILPTGAKSFS	-801.7	-946.9	ALLLKVNQIGSVT	-716.3	-719.2
ASTGVHEAVELRD	-627.7	-813.8	TGAKSFSEAMKMG	-581.1	-736.1	IGSVTESIKACKM	-687.7	-687.7
VHEAVELRDADKN	-720.5	-770.4	FSEAMKMGTEVYH	-673.6	-730.0	KACKMSRAAGWGV	-658.5	-746.5
VELRDADKNAYMG	-636.3	-747.7	MKMGTEVYHHLKS	-715.1	-715.1	MSRAAGWGVMVSH	-922.9	-922.9
DADKNAYMGKGVL	-595.1	-712.6	GTEVYHHLKSVIK	-528.5	-638.2	AGWGVMVSHRSGE	-819.7	-916.8
NAYMGKGVLNAVK	-594.5	-664.3	LKSVIKGKYGLDA	-720.3	-773.5	VSHRSGETEDSTI	-618.1	-729.4
GKGVLNAVKNVNE	-499.4	-556.7	GKYGLDACNVGDE	-669.4	-858.5	ETEDSTIADIVVG	-554.9	-632.4
LNAVKNVNEVIAP	-505.6	-597.1	LDACNVGDEGGFA	-746.1	-813.1	STIADIVVGLRTG	-603.1	-703.3
KNVNEVIAPALIK	-569.6	-578.6	GDEGGFAPNIQDN	-626.0	-712.3	IADIVVGLRTGQI	-669.7	-794.5

Table S3. Binding energy between eighty 13-mer peptides and DLA-DRB1*01101 allele obtained from the molecular docking method.

EVIAPALIKEKFV	-743.7	-804.9	APNIQDNMEGLEL	-579.1	-645.3	GLRTGQIKTGAPC	-738.8	-833.7
ALIKEKFVVTDQQ	-687.0	-823.2	NMEGLELLKTAID	-513.2	-619.5	IKTGAPCRSERLA	-656.9	-711.1
VVTDQQRIDEFMI	-709.4	-774.6	LKTAIDKAGYTGK	-723.0	-776.9	CRSERLAKYNQLL	-715.0	-756.8
QQRIDEFMIKLDG	-635.2	-779.2	GYTGKVKIGMDVA	-859.7	-859.7	SERLAKYNQLLRI	-639.9	-716.5
EFMIKLDGSPNKG	-578.3	-634.6	KIGMDVAASEFYQ	-612.2	-773.3	AKYNQLLRIEEEL	-629.2	-702.1
DGSPNKGKLGANA	-365.8	-470.3	ASEFYQDGNYNLD	-626.6	-743.8	LRIEEELGPKAVY	-710.7	-909.9
KGKLGANAILGVS	-463.4	-592.5	FYQDGNYNLDFKN	-778.0	-778.6	LGPKAVYAGEHFR	-792.8	-885.1
ANAILGVSLAVCK	-601.5	-665.7	KNPKAAASSIVSG	-490.5	-555.1	KAVYAGEHFRNPL	-743.9	-903.3

[¶] binding energy unit is kJ/mol. ^{*} The lowest binding energy value between the 13-mer peptides of EgEnolase and DRB1*01101 allele was selected as

final CD4⁺ T-helper epitope.