Mohammad Amir Amirkhani
1, Rashin Mohseni
2, Masoud Soleimani
3, Alireza Shoae-Hassani
2, Mohammad Ali Nilforoushzadeh
1*1 Skin and Stem Cell Research Center, Tehran University of Medical Sciences, Tehran, Iran
2 Applied Cell Sciences Department, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran
3 Hematology Department, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
Abstract
Introduction: Much attention has been paid to the idea of cell therapy using stem cells from different sources of the body. Fat-derived stem cells that are called adipose derived stem cells (ADSCs) from stromal vascular fraction (SVF) are the subject of many studies in several cell therapy clinical trials. Despite production of some GMP-grade enzymes to isolate SVF for clinical trials, there are critical conditions like inconsistency in lot-to-lot enzyme activity, endotoxin residues, other protease activities and cleavage of some cell surface markers which significantly narrow the options. So we decided to develop a new method via sonication cavitation to homogenize fat tissue and disrupt partially adipose cells to obtain SVF and finally ADSCs at a minimum of time and expenses.
Methods: The fat tissue was chopped in a sterile condition by a blender mixer and then sonicated for 2 s before centrifugation. The next steps were performed as the regular methods of SVF harvesting, and then it was characterized using flow cytometry.
Results: Analysis of the surface markers of the cells revealed similar sets of surface antigens. The cells showed slightly high expression of CD34, CD73 and CD105. The differentiation capacity of these cells indicates that multipotent properties of the cells are not compromised after sonication. But we had the less osteogenic potential of cells when compared with the enzymatic method.
Conclusion: The current protocol based on the sonication-mediated cavitation is a rapid, safe and cost-effective method, which is proposed for isolation of SVF and of course ADSCs cultures in a large scale for the clinical trials or therapeutic purposes.