Vida Ebrahimi
1 , Atieh Hashemi
1* 1 Department of Pharmaceutical Biotechnology, School of Pharmacy, Shahid Beheshti University of Medical Sciences, Tehran, Iran
Abstract
Introduction: CRISPR-Cas9 technology has revolutionized plant genome editing, providing precise and efficient methods for genetic modification. This study focuses on the advancements and delivery of CRISPR-Cas9 in plant gene editing.
Methods: A comprehensive search in scientific databases, including PubMed, ScienceDirect, and Google Scholar, was conducted to gather information on CRISPR-Cas9 gene editing and its delivery in precise gene modification in plants.
Results: The evolving landscape of CRISPR nucleases has led to the development of innovative technologies, enhancing plant research. However, successful editing is contingent on efficient delivery of genome engineering reagents. CRISPR-based gene editing in plants utilizes diverse delivery methods: Agrobacterium-mediated transformation for bacterial transfer, biolistic transformation for physical gene insertion, electroporation for direct gene entry, expression of developmental regulators for gene expression modulation, and tobacco rattle virus as a viral vector, each offering distinct advantages for precise and efficient genetic modification in plants.
Conclusion: CRISPR-Cas9 gene editing stands as a pivotal advancement in plant genetics, offering precise gene manipulation with applications in agriculture and biotechnology. The continuous refinement of reagent delivery tools reinforces CRISPR-Cas9's transformative role in plant genome editing, with significant implications for broader scientific applications.