Logo-bi
Bioimpacts. 2018;8(1): 1-3. doi: 10.15171/bi.2018.01
PMID: 29713596        PMCID: PMC5915703

Editorial

Bacterial NanoCellulose: what future?

Francisco Miguel Portela da Gama * , Fernando Dourado

Cited by CrossRef: 56


1- Patel D, Dutta S, Lim K. Nanocellulose-based polymer hybrids and their emerging applications in biomedical engineering and water purification. RSC Adv. 2019;9(33):19143 [Crossref]
2- Raval A, Raval U, Sayyed R. Utilization of industrial waste for the sustainable production of bacterial cellulose. Environmental Sustainability. 2020;3(4):427 [Crossref]
3- Kolobanov A, Shumakova A, Shipelin V, Sokolov I, Maisaya K, Gmoshinski I, Khotimchenko S. Influence of Bacterial Nanocellulose Consumption on the Content of Macronutrients and Trace Elements in the Organs of Rats. Bull Exp Biol Med. 2024;177(6):745 [Crossref]
4- Solikhin A, Pranata A, Muchtar T, Suzuki S, Kojima Y, Kobori H. Research mapping of Indonesia nano-lignocellulose fiber studies and its potential for industrial application. SN Appl Sci. 2020;2(4) [Crossref]
5- Ahankari S, Subhedar A, Bhadauria S, Dufresne A. Nanocellulose in food packaging: A review. Carbohydrate Polymers. 2021;255:117479 [Crossref]
6- de Mattos I, Holzer J, Tuca A, Groeber-Becker F, Funk M, Popp D, Mautner S, Birngruber T, Kamolz L. Uptake of PHMB in a bacterial nanocellulose-based wound dressing: A feasible clinical procedure. Burns. 2019;45(4):898 [Crossref]
7- Nascimento F, Torres C, Freitas F, Reis M, Crespo M. Functional and genomic characterization of Komagataeibacter uvaceti FXV3, a multiple stress resistant bacterium producing increased levels of cellulose. Biotechnology Reports. 2021;30:e00606 [Crossref]
8- Reshmy R, Philip E, Madhavan A, Tarfdar A, Sindhu R, Binod P, Sirohi R, Kumar Awasthi M, Pandey A. Biorefinery aspects for cost-effective production of nanocellulose and high value-added biocomposites. Fuel. 2022;311:122575 [Crossref]
9- Bencurova E, Chinazzo A, Kar B, Jung M, Dandekar T. How Far Is the Nanocellulose Chip and Its Production in Reach? A Literature Survey. Nanomaterials. 2024;14(18):1536 [Crossref]
10- Wang F, Hu Z, Ouyang S, Wang S, Liu Y, Li M, Wu Y, Li Z, Qian J, Wu Z, Zhao Z, Wang L, Jia C, Ma S. Application progress of nanocellulose in food packaging: A review. International Journal of Biological Macromolecules. 2024;268:131936 [Crossref]
11- Azeredo H, Barud H, Farinas C, Vasconcellos V, Claro A. Bacterial Cellulose as a Raw Material for Food and Food Packaging Applications. Front Sustain Food Syst. 2019;3 [Crossref]
12- Bernardelli de Mattos I, Nischwitz S, Tuca A, Groeber-Becker F, Funk M, Birngruber T, Mautner S, Kamolz L, Holzer J. Delivery of antiseptic solutions by a bacterial cellulose wound dressing: Uptake, release and antibacterial efficacy of octenidine and povidone-iodine. Burns. 2020;46(4):918 [Crossref]
13- Wang Y, Ni Q, Geng B, Wu X, Shan G, Feng J, Zhou G, Wu Q, Du M. Facile Preparation of Ni Foam/Bacterial Nanocellulose Composite for Oil/Water Separation. Fibers Polym. 2023;24(4):1441 [Crossref]
14- Khan M, Wasim M, Farooq A, Naeem M, Mushtaq M, Liu J, Chen C, Wei Q. A review study on derivation of nanocellulose to its functional properties and applications in drug delivery system, food packaging, and biosensing devices. Polym Bull. 2024;81(11):9519 [Crossref]
15- Płoska J, Garbowska M, Pluta A, Stasiak-Różańska L. Bacterial cellulose – Innovative biopolymer and possibilities of its applications in dairy industry. International Dairy Journal. 2023;140:105586 [Crossref]
16- Lan G, Liu Y, Zhou N, Guo D, Ma M. Multifunctional nanocellulose-based composites for potential environmental applications. Cellulose. 2023;30(1):39 [Crossref]
17- Fiallos-Cardenas M, Gavin C, Huilcarema-Enríquez K, Cumbicus-Bravo A, Pozo F. Innovation in obtaining bacterial nanocellulose from banana rachis: Effects of ozone treatment. Case Studies in Chemical and Environmental Engineering. 2025;11:101044 [Crossref]
18- Vasconcellos V, Farinas C, Ximenes E, Slininger P, Ladisch M. Adaptive laboratory evolution of nanocellulose‐producing bacterium. Biotech & Bioengineering. 2019;116(8):1923 [Crossref]
19- Thomas P, Duolikun T, Rumjit N, Moosavi S, Lai C, Bin Johan M, Fen L. Comprehensive review on nanocellulose: Recent developments, challenges and future prospects. Journal of the Mechanical Behavior of Biomedical Materials. 2020;110:103884 [Crossref]
20- Mcmeeking A, Dieckmann E, Cheeseman C. Production methods for bacterial biomaterials: A review. Materials Today Sustainability. 2024;25:100623 [Crossref]
21- R. R, Philip E, Madhavan A, K.B. A, Binod P, Pugazhendhi A, Awasthi M, Gnansounou E, Pandey A, Sindhu R. Promising eco-friendly biomaterials for future biomedicine: Cleaner production and applications of Nanocellulose. Environmental Technology & Innovation. 2021;24:101855 [Crossref]
22- Masek A, Kosmalska A. Technological limitations in obtaining and using cellulose biocomposites. Front Bioeng Biotechnol. 2022;10 [Crossref]
23- Kolesovs S, Semjonovs P. Production of bacterial cellulose from whey—current state and prospects. Appl Microbiol Biotechnol. 2020;104(18):7723 [Crossref]
24- Горбатова П, Гисматулина Ю, Корчагина А, Шавыркина Н, Будаева В. DEPENDENCE OF THE MASS FRACTION OF NITROGEN IN BACTERIAL NANOCELLULOSE NITRATES ON THE WATER CONTENT IN THE NITRATING MIXTURE. 2023;(5(51)):75 [Crossref]
25- Picot-Allain M, Emmambux M. Isolation, Characterization, and Application of Nanocellulose from Agro-industrial By-products: A Review. Food Reviews International. 2023;39(2):941 [Crossref]
26- Jaroennonthasit W, Lam N, Sukyai P. Evaluation of carbon sources from sugar industry to bacterial nanocellulose produced by Komagataeibacter xylinus. International Journal of Biological Macromolecules. 2021;191:299 [Crossref]
27- Ashrafi Z, Lucia L, Krause W. Underwater Superoleophobic Matrix-Formatted Liquid-Infused Porous Biomembranes for Extremely Efficient Deconstitution of Nanoemulsions. ACS Appl Mater Interfaces. 2020;12(45):50996 [Crossref]
28- Schiefer J, Aretz G, Fuchs P, Bagheri M, Funk M, Schulz A, Daniels M. Comparison of wound healing and patient comfort in partial‐thickness burn wounds treated with SUPRATHEL and epictehydro wound dressings. International Wound Journal. 2022;19(4):782 [Crossref]
29- Wang Z, Li S, Zhao X, Liu Z, Shi R, Hao M. Applications of bacterial cellulose in the food industry and its health-promoting potential. Food Chemistry. 2025;464:141763 [Crossref]
30- Onyianta A, O’Rourke D, Sun D, Popescu C, Dorris M. High aspect ratio cellulose nanofibrils from macroalgae Laminaria hyperborea cellulose extract via a zero-waste low energy process. Cellulose. 2020;27(14):7997 [Crossref]
31- Vincentini O, Blier A, Bogni A, Brun M, Cecchetti S, De Battistis F, Denis S, Etienne‐Mesmin L, Ferraris F, Fumagalli F, Hogeveen K, Iacoponi F, Raggi A, Siciliani L, Stanco D, Verleysen E, Fessard V, Mast J, Blanquet‐Diot S, Bremer‐Hoffmann S, Cubadda F. EFSA Project on the use of New Approach Methodologies (NAMs) for the hazard assessment of nanofibres. Lot 1, nanocellulose oral exposure: gastrointestinal digestion, nanofibres uptake and local effects. EFS3. 2023;20(9) [Crossref]
32- Takayama G, Kondo T. Quantitative evaluation of fiber network structure–property relationships in bacterial cellulose hydrogels. Carbohydrate Polymers. 2023;321:121311 [Crossref]
33- Vilela C, Silvestre A, Figueiredo F, Freire C. Nanocellulose-based materials as components of polymer electrolyte fuel cells. J Mater Chem A. 2019;7(35):20045 [Crossref]
34- Holzer J, Tiffner K, Kainz S, Reisenegger P, Bernardelli de Mattos I, Funk M, Lemarchand T, Laaff H, Bal A, Birngruber T, Kotzbeck P, Kamolz L. A novel human ex-vivo burn model and the local cooling effect of a bacterial nanocellulose-based wound dressing. Burns. 2020;46(8):1924 [Crossref]
35- Nischwitz S, Bernardelli de Mattos I, Hofmann E, Groeber-Becker F, Funk M, Mohr G, Branski L, Mautner S, Kamolz L. Continuous pH monitoring in wounds using a composite indicator dressing — A feasibility study. Burns. 2019;45(6):1336 [Crossref]
36- Nguyen K, Le T, Le K, Vo N, Pham C, Le T, Le H, Le N, Le H. Application of nata de coco as a biodegradable material for the aqueous adsorption of toxic metal cations. Materials Today: Proceedings. 2023; [Crossref]
37- Kolesovs S, Neiberts K, Beluns S, Gaidukovs S, Semjonovs P. Bacterial cellulose production by Novacetimonas hansenii MSCL 1646 on apple juice. Appl Microbiol Biotechnol. 2022;106(22):7449 [Crossref]
38- Nguyen H, Pham C, Nguyen K, Tran A, Le N, Ho P, Le H. Bacterial Cellulose‐Based Material from Coconut Water as Efficient Green Adsorbent for Heavy Metal Cations. Chem Eng & Technol. 2023;46(12):2547 [Crossref]
39- de Amorim J, de Souza K, Duarte C, da Silva Duarte I, de Assis Sales Ribeiro F, Silva G, de Farias P, Stingl A, Costa A, Vinhas G, Sarubbo L. Plant and bacterial nanocellulose: production, properties and applications in medicine, food, cosmetics, electronics and engineering. A review. Environ Chem Lett. 2020;18(3):851 [Crossref]
40- Brand W, van Kesteren P, Swart E, Oomen A. Overview of potential adverse health effects of oral exposure to nanocellulose. Nanotoxicology. 2022;16(2):217 [Crossref]
41- R R, Philip E, Thomas D, Madhavan A, Sindhu R, Binod P, Varjani S, Awasthi M, Pandey A. Bacterial nanocellulose: engineering, production, and applications. Bioengineered. 2021;12(2):11463 [Crossref]
42- Resch A, Staud C, Radtke C. Nanocellulose‐based wound dressing for conservative wound management in children with second‐degree burns. International Wound Journal. 2021;18(4):478 [Crossref]
43- Sharma C, Bhardwaj N. Bacterial nanocellulose: Present status, biomedical applications and future perspectives. Materials Science and Engineering: C. 2019;104:109963 [Crossref]
44- Takayama G, Kondo T. In situ visualization of the tensile deformation mechanism of bacterial cellulose network. Carbohydrate Polymers. 2023;313:120883 [Crossref]
45- Paramasivan M, S S, K N, R V, B Y, Gonmei M, M K P, Mahajan R, P C. Biopolymer-based Sustainable Membrane for Skin Regeneration. Mater Circ Econ. 2024;6(1) [Crossref]
46- Zarepour A, Gok B, Budama-Kilinc Y, Khosravi A, Iravani S, Zarrabi A. Bacterial nanocelluloses as sustainable biomaterials for advanced wound healing and dressings. J Mater Chem B. 2024;12(48):12489 [Crossref]
47- Forte A, Dourado F, Mota A, Neto B, Gama M, Ferreira E. Life cycle assessment of bacterial cellulose production. Int J Life Cycle Assess. 2021;26(5):864 [Crossref]
48- Vilela C, Moreirinha C, Domingues E, Figueiredo F, Almeida A, Freire C. Antimicrobial and Conductive Nanocellulose-Based Films for Active and Intelligent Food Packaging. Nanomaterials. 2019;9(7):980 [Crossref]
49- Alimardani Y, Mirzakhani E, Ansari F, Pourjafar H, Sadeghi N. Prospective and applications of bacterial nanocellulose in dentistry. Cellulose. 2024;31(13):7819 [Crossref]


As a peer-reviewed international open-access journal, BioImpacts publishes articles on basic and translational aspects of pharmaceutical and biomedical sciences. 
Acceptance rate: 24% 
Publication fee: Free of charge