Logo-bi
BioImpacts. 2022;12(4): 371-391. doi: 10.34172/bi.2022.23871
PMID: 35975201        PMCID: PMC9376165

Review

Advance trends in targeting homology-directed repair for accurate gene editing: An inclusive review of small molecules and modified CRISPR-Cas9 systems

Forough Shams 1 ORCID, Hadi Bayat 2,3, Omid Mohammadian 4,3, Somayeh Mahboudi 5, Hassan Vahidnezhad 6,7, Mohsen Soosanabadi 8, Azam Rahimpour 4,3 * ORCID

Cited by CrossRef: 23


1- Siles L, Ruiz-Nogales S, Navinés-Ferrer A, Méndez-Vendrell P, Pomares E. Efficient correction of ABCA4 variants by CRISPR-Cas9 in hiPSCs derived from Stargardt disease patients. Molecular Therapy - Nucleic Acids. 2023;32:64 [Crossref]
2- Bigini F, Lee S, Sun Y, Sun Y, Mahajan V. Unleashing the potential of CRISPR multiplexing: Harnessing Cas12 and Cas13 for precise gene modulation in eye diseases. Vision Research. 2023;213:108317 [Crossref]
3- Shepelev M, Komkov D, Golubev D, Borovikova S, Mazurov D, Kruglova N. Increasing the Level of Knock-In of the MT-C34-Encoding Construct into the CXCR4 Locus by Modifying Donor DNA with Cas9 Target Sites. Molekulârnaâ biologiâ. 2024;58(4) [Crossref]
4- Samson C, du Rand A, Hunt J, Whitford W, Jacobsen J, Sheppard H. A bioinformatic analysis of gene editing off-target loci altered by common polymorphisms, using ‘PopOff’. Journal of the Royal Society of New Zealand. 2024;:1 [Crossref]
5- Cotta G, Teixeira dos Santos R, Costa G, Lacerda S. Reporter Alleles in hiPSCs: Visual Cues on Development and Disease. IJMS. 2024;25(20):11009 [Crossref]
6- Allen D, Knop O, Itkowitz B, Kalter N, Rosenberg M, Iancu O, Beider K, Lee Y, Nagler A, Somech R, Hendel A. CRISPR-Cas9 engineering of the RAG2 locus via complete coding sequence replacement for therapeutic applications. Nat Commun. 2023;14(1) [Crossref]
7- Golubev D, Komkov D, Shepelev M, Mazurov D, Kruglova N. Efficient editing of the CXCR4 locus using Cas9 ribonucleoprotein complexes stabilized with polyglutamic acid. Doklady Rossijskoj akademii nauk Nauki o žizni. 2024;514(1):85 [Crossref]
8- Rabaan A, AlSaihati H, Bukhamsin R, Bakhrebah M, Nassar M, Alsaleh A, Alhashem Y, Bukhamseen A, Al-Ruhimy K, Alotaibi M, Alsubki R, Alahmed H, Al-Abdulhadi S, Alhashem F, Alqatari A, Alsayyah A, Farahat R, Abdulal R, Al-Ahmed A, Imran M, Mohapatra R. Application of CRISPR/Cas9 Technology in Cancer Treatment: A Future Direction. Current Oncology. 2023;30(2):1954 [Crossref]
9- Hasselbeck S, Cheng X. Molecular Marvels: Small Molecules Paving the Way for Enhanced Gene Therapy. Pharmaceuticals. 2023;17(1):41 [Crossref]
10- Golubev D, Komkov D, Shepelev M, Mazurov D, Kruglova N. Methods to Increase the Efficiency of Knock-in of a Construct Encoding the HIV-1 Fusion Inhibitor, MT-C34 Peptide, into the CXCR4 Locus in the CEM/R5 T Cell Line. Mol Biol. 2024;58(4):658 [Crossref]
11- Bayat H, Mirahmadi M, Azarshin Z, Ohadi H, Delbari A, Ohadi M. CRISPR/Cas9-mediated deletion of a GA-repeat in human GPM6B leads to disruption of neural cell differentiation from NT2 cells. Sci Rep. 2024;14(1) [Crossref]
12- Golubev D, Komkov D, Shepelev M, Mazurov D, Kruglova N. Efficient Editing of the CXCR4 Locus Using Cas9 Ribonucleoprotein Complexes Stabilized with Polyglutamic Acid. Dokl Biol Sci. 2023;513(S1):S28 [Crossref]
13- Zhao Y, Li X, Liu C, Jiang C, Guo X, Xu Q, Yin Z, Liu Z, Mu Y. Improving the Efficiency of CRISPR Ribonucleoprotein-Mediated Precise Gene Editing by Small Molecules in Porcine Fibroblasts. Animals. 2024;14(5):719 [Crossref]
14- Shepelev M, Komkov D, Golubev D, Borovikova S, Mazurov D, Kruglova N. Donor DNA Modification with Cas9 Targeting Sites Improves the Efficiency of MTC34 Knock-in into the CXCR4 Locus. Mol Biol. 2024;58(4):672 [Crossref]
15- Golubev D, Komkov D, Shepelev M, Mazurov D, Kruglova N. Increasing the Level of Knock-in of a Construct Encoding the HIV-1 Fusion Inhibitor, MT-C34 Peptide, into the CXCR4 Locus in the CEM/R5 T Cell Line. Molekulârnaâ biologiâ. 2024;58(4) [Crossref]
16- Kruglova N, Shepelev M. Increasing Gene Editing Efficiency via CRISPR/Cas9- or Cas12a-Mediated Knock-In in Primary Human T Cells. Biomedicines. 2024;12(1):119 [Crossref]
17- Martinez Tapiero D, Martínez Rentería M, Camacho Kurmen J. Uso de tecnologías CRISPR-CAS9 en microalgas aplicado a la obtención de productos biotecnológicos de interés industrial. Revista Mutis. 2024;14(1):1 [Crossref]
18- Bayat H, Farahmand F, Tabatabaee S, Shams F, Mohammadian O, Pourmaleki E, Rahimpour A. Evaluation of the paired-Cas9 nickase and RNA-guided FokI genome editing tools in precise integration of an anti-CD52 bicistronic monoclonal antibody expression construct at Chinese hamster ovary cells 18S rDNA locus. Protein Expression and Purification. 2024;217:106445 [Crossref]
19- Leal A, Herreno-Pachón A, Benincore-Flórez E, Karunathilaka A, Tomatsu S. Current Strategies for Increasing Knock-In Efficiency in CRISPR/Cas9-Based Approaches. IJMS. 2024;25(5):2456 [Crossref]
20- Lu M, Billerbeck S. Improving homology‐directed repair by small molecule agents for genetic engineering in unconventional yeast?—Learning from the engineering of mammalian systems. Microbial Biotechnology. 2024;17(2) [Crossref]
21- Lye J, Delaney D, Leith F, Sardesai V, McLenachan S, Chen F, Atlas M, Wong E. Recent Therapeutic Progress and Future Perspectives for the Treatment of Hearing Loss. Biomedicines. 2023;11(12):3347 [Crossref]
22- Cappabianca D, Pham D, Forsberg M, Bugel M, Tommasi A, Lauer A, Vidugiriene J, Hrdlicka B, McHale A, Sodji Q, Skala M, Capitini C, Saha K. Metabolic priming of GD2 TRAC-CAR T cells during manufacturing promotes memory phenotypes while enhancing persistence. Molecular Therapy - Methods & Clinical Development. 2024;32(2):101249 [Crossref]


As a peer-reviewed international open-access journal, BioImpacts publishes articles on basic and translational aspects of pharmaceutical and biomedical sciences. 
Acceptance rate: 24% 
Publication fee: Free of charge