Logo-bi
Bioimpacts. 2019;9(3): 131-144. doi: 10.15171/bi.2019.18
PMID: 31508329        PMCID: PMC6726745

Original Research

A multi-method and structure-based in silico vaccine designing against Echinococcus granulosus through investigating enolase protein

Mohammad Mostafa Pourseif 1,2, Mitra Yousefpour 1 * , Mohammad Aminianfar 2, Gholamali Moghaddam 3, Ahmad Nematollahi 4 ORCID

Cited by CrossRef: 46


1- Moghadaszadeh M, Khayyati M, Spotin A, Norouzi R, Pagheh A, Oliveira S, Pereira M, Ahmadpour E. Scolicidal and Apoptotic Activities of 5-hydroxy-1, 4-naphthoquinone as a Potent Agent against Echinococcus granulosus Protoscoleces. Pharmaceuticals. 2021;14(7):623 [Crossref]
2- Alissa M, Alghamdi A, Alghamdi S, Suleman M. Immunoinformatic based designing of highly immunogenic multi-epitope subunit vaccines to stimulate an adaptive immune response against Junin virus. Mol Divers. 2024; [Crossref]
3- N, Haq I, Rahiyab M, Ali S, Khan I, Iqbal A. Rational in-silico design of a multi-epitope vaccine against human Rhinovirus an immune simulation and molecular dynamics simulation approach. Vacunas. 2025;26(3):500427 [Crossref]
4- Nayeri T, Asl A, Ghaffarifar F, Moridnia A. In silico Analysis of Toxoplasma gondii Surface and Secretory Proteins for the Design of a Novel Chimeric Vaccine. TOMICROJ. 2025;19(1) [Crossref]
5- Nourmohammadi H, Javanmardi E, Shams M, Shamsinia S, Nosrati M, Yousefi A, Nemati T, Fatollahzadeh M, Ghasemi E, Kordi B, Majidiani H, Irannejad H. Multi-epitope vaccine against cystic echinococcosis using immunodominant epitopes from EgA31 and EgG1Y162 antigens. Informatics in Medicine Unlocked. 2020;21:100464 [Crossref]
6- Martinelli D. In silico vaccine design: A tutorial in immunoinformatics. Healthcare Analytics. 2022;2:100044 [Crossref]
7- Kharisma V, Ansori A. Construction of Epitope-Based Peptide Vaccine Against SARS-CoV-2: Immunoinformatics Study. J Pure Appl Microbiol. 2020;14(suppl 1):999 [Crossref]
8- Abdelmoneim A, Mustafa M, Abdelmageed M, Murshed N, Dawoud E, Ahmed E, Kamal Eldein R, Elfadol N, Sati A, Makhawi A. Immunoinformatics design of multiepitopes peptide-based universal cancer vaccine using matrix metalloproteinase-9 protein as a target. Immunological Medicine. 2021;44(1):35 [Crossref]
9- Mohammadzadeh R, Soleimanpour S, Pishdadian A, Farsiani H. Designing and development of epitope-based vaccines againstHelicobacter pylori. Critical Reviews in Microbiology. 2022;48(4):489 [Crossref]
10- Kuri P, Goswami P. Current Update on Rotavirus in-Silico Multiepitope Vaccine Design. ACS Omega. 2023;8(1):190 [Crossref]
11- Sheikh K, Khanam S, Salam N. In silico approach for a multi-epitope, multi-stage vaccine construct against human hookworm infection. Next Research. 2025;2(4):100805 [Crossref]
12- Kardani K, Bolhassani A, Namvar A. An overview ofin silicovaccine design against different pathogens and cancer. Expert Review of Vaccines. 2020;19(8):699 [Crossref]
13- Pourseif M, Masoudi-Sobhanzadeh Y, Azari E, Parvizpour S, Barar J, Ansari R, Omidi Y. Self-amplifying mRNA vaccines: Mode of action, design, development and optimization. Drug Discovery Today. 2022;27(11):103341 [Crossref]
14- N, Haq I, Rahiyab M, Ali S, Khan I, Iqbal A. Rational in-silico design of a multi-epitope vaccine against human Rhinovirus an immune simulation and molecular dynamics simulation approach. Vacunas (English Edition). 2025;26(3):500427 [Crossref]
15- Pourseif M, Moghaddam G, Nematollahi A, Khordadmehr M, Naghili B, Dehghani J, Omidi Y. Vaccination with rEGVac elicits immunoprotection against different stages of Echinococcus granulosus life cycle: A pilot study. Acta Tropica. 2021;218:105883 [Crossref]
16- Parvin R, Masum M, Heema H, Akter A, Hossain M, Siddiki A, Haque A. Designing of a multiepitope-based vaccine against echinococcosis utilizing the potent Ag5 antigen: Immunoinformatics and simulation approaches. PLoS ONE. 2025;20(2):e0310510 [Crossref]
17- Zhao Z, Ma X, Zhang R, Hu F, Zhang T, Liu Y, Han M, You F, Yang Y, Zheng W. A novel liposome-polymer hybrid nanoparticles delivering a multi-epitope self-replication DNA vaccine and its preliminary immune evaluation in experimental animals. Nanomedicine: Nanotechnology, Biology and Medicine. 2021;35:102338 [Crossref]
18- Chukwudozie O, Chukwuanukwu R, Iroanya O, Eze D, Duru V, Dele-Alimi T, Kehinde B, Bankole T, Obi P, Okinedo E. Attenuated Subcomponent Vaccine Design Targeting the SARS-CoV-2 Nucleocapsid Phosphoprotein RNA Binding Domain: In Silico Analysis. Journal of Immunology Research. 2020;2020:1 [Crossref]
19- Majidiani H, Pourseif M, Kordi B, Sadeghi M, Najafi A. TgVax452, an epitope-based candidate vaccine targeting Toxoplasma gondii tachyzoite-specific SAG1-related sequence (SRS) proteins: immunoinformatics, structural simulations and experimental evidence-based approaches. BMC Infect Dis. 2024;24(1) [Crossref]
20- Ji S, Gavande P, Choudhury B, Goyal A. Computational design and structure dynamics analysis of bifunctional chimera of endoxylanase from Clostridium thermocellum and xylosidase from Bacteroides ovatus. 3 Biotech. 2023;13(2) [Crossref]
21- TOPUZOĞULLARI M, ACAR T, PELİT ARAYICI P, UÇAR B, UĞUREL E, ABAMOR E, ARASOĞLU T, TURGUT-BALIK D, DERMAN S. An insight into the epitope-based peptide vaccine design strategy and studies against COVID-19. Turk J Biol. 2020;44(3):215 [Crossref]
22- Du X, Zhu M, Zhang T, Wang C, Tao J, Yang S, Zhu Y, Zhao W. The Recombinant Eg.P29-Mediated miR-126a-5p Promotes the Differentiation of Mouse Naive CD4+ T Cells via DLK1-Mediated Notch1 Signal Pathway. Front Immunol. 2022;13 [Crossref]
23- Kaushal N, Jain S, Baranwal M. Computational design of immunogenic peptide constructs comprising multiple human leukocyte antigen restricted dengue virus envelope epitopes. J of Molecular Recognition. 2022;35(9) [Crossref]
24- Simay S, Akbarzadeh-Khiavi M, Pourseif M, Barar J, Safary A, Omidi Y. Recombinant production and characterization of L-glutaminase (glsA) as a promiscuity therapeutic enzyme. Appl Microbiol Biotechnol. 2022;106(17):5511 [Crossref]
25- Zhou B, Ding H, Yang J, Chai J, Guo H, Wang H. Effects of diclazuril on the expression of enolase in second-generation merozoites of Eimeria tenella. Poultry Science. 2020;99(12):6402 [Crossref]
26- Sadr S, Borji H. Echinococcus granulosus as a Promising Therapeutic Agent against Triplenegative Breast Cancer. CCTR. 2023;19(4):292 [Crossref]
27- Halder S, Sharma A, Al Arian T, Saha S, Shil A, Rafi M, Sarker S, Alam M, Himel M, Hasan M, Shawan M. In silico Designing of a Multi-epitope-based Subunit Vaccine against SARS-CoV-2 (Delta Variant) by Exploiting Its Structural Proteins: A Reverse Vaccinomics and Immunoinformatics Approach. COVID. 2024;5(4) [Crossref]
28- Rajput V, Sharma R, Kumari A, Vyas N, Prajapati V, Grover A. Engineering a multi epitope vaccine against SARS-CoV-2 by exploiting its non structural and structural proteins. Journal of Biomolecular Structure and Dynamics. 2022;40(19):9096 [Crossref]
29- Salaikumaran M, Kasamuthu P, Aathmanathan V, Burra V. An in silico approach to study the role of epitope order in the multi-epitope-based peptide (MEBP) vaccine design. Sci Rep. 2022;12(1) [Crossref]
30- Kafle A, Ojha S. Advancing vaccine development against Opisthorchis viverrini: A synergistic integration of omics technologies and advanced computational tools. Front Pharmacol. 2024;15 [Crossref]
31- Ahmed M, Rao T, Mutahir Z, Ahmed S, Ullah N, Ojha S. Immunoinformatic-driven design and evaluation of multi-epitope mRNA vaccine targeting HIV-1 gp120. Front Immunol. 2025;16 [Crossref]
32- Shao G, Zhu X, Hua R, Lu Z, Chen Y, Yang A, Yang G. Cocktail vaccine induces immunoprotection and modulates the fecal microbiota in dogs against Echinococcus granulosus infection. npj Vaccines. 2025;10(1) [Crossref]
33- Fathollahi M, Fathollahi A, Motamedi H, Moradi J, Alvandi A, Abiri R. In silico vaccine design and epitope mapping of New Delhi metallo-beta-lactamase (NDM): an immunoinformatics approach. BMC Bioinformatics. 2021;22(1) [Crossref]
34- Rahiyab M, Ul Haq I, Ali S, Hussain Z, Ali S, Khan I, Iqbal A. Design of a new multi-epitope subunit vaccine to combat the EIA virus, targeting Pol, Gag, and Env proteins: In silico technique. Vacunas. 2025;26(3):500463 [Crossref]
35- Saha R, Ghosh P, Burra V. Designing a next generation multi-epitope based peptide vaccine candidate against SARS-CoV-2 using computational approaches. 3 Biotech. 2021;11(2) [Crossref]
36- Goodswen S, Kennedy P, Ellis J. A guide to current methodology and usage of reverse vaccinology towards in silico vaccine discovery. 2023;47(2) [Crossref]
37- Mugunthan S, Harish M. Multi-epitope-Based Vaccine Designed by Targeting Cytoadherence Proteins of Mycoplasma gallisepticum. ACS Omega. 2021;6(21):13742 [Crossref]
38- Yaghoobizadeh F, Roayaei Ardakani M, Ranjbar M, Khosravi M, Galehdari H. Development of a potent recombinant scFv antibody against the SARS-CoV-2 by in-depth bioinformatics study: Paving the way for vaccine/diagnostics development. Computers in Biology and Medicine. 2024;170:108091 [Crossref]
39- de Araújo L, de Melo Santos N, Corsetti P, de Almeida L. Immunoinformatic Approach for Rational Identification of Immunogenic Peptides Against Host Entry and/or Exit Mpox Proteins and Potential Multiepitope Vaccine Construction. 2024;229(Supplement_2):S285 [Crossref]
40- Rahiyab M, Ul Haq I, Ali S, Hussain Z, Ali S, Khan I, Iqbal A. Design of a new multi-epitope subunit vaccine to combat the EIA virus, targeting Pol, Gag, and Env proteins: In silico technique. Vacunas (English Edition). 2025;26(3):500463 [Crossref]
41- Suleman M, Khan S, Rashid F, Khan A, Hussain Z, Zaman N, Rehman S, Zhai J, Xue M, Zheng C. Designing a multi-epitopes subunit vaccine against human herpes virus 6A based on molecular dynamics and immune stimulation. International Journal of Biological Macromolecules. 2023;244:125068 [Crossref]
42- Nath P, Goyal A. Structure and dynamics analysis of multi-domain putative β-1,4-glucosidase of family 3 glycoside hydrolase (PsGH3) from Pseudopedobacter saltans. J Mol Model. 2021;27(4) [Crossref]

As a peer-reviewed international open-access journal, BioImpacts publishes articles on basic and translational aspects of pharmaceutical and biomedical sciences. 
Acceptance rate (2024): 20% 
Publication fee: Free of charge

Indexing/Abstracting Info
PubMedPubMed Central; Scopus; Science Citation Index Expanded; Google Scholar;   SJR; Essential Science IndicatorsEmbase; EBSCOhost; CAS: DOAJSHERPA/RoMEO
Member of   
Follower of ICMJE
Permission: Creative Commons